KeepAugment: A Simple Information-Preserving Data Augmentation Approach

Abstract

Data augmentation (DA) is an essential technique for training state-of-the-art deep learning systems. In this paper, we empirically show data augmentation might introduce noisy augmented examples and consequently hurt the performance on unaugmented data during inference. To alleviate this issue, we propose a simple yet highly effective approach, dubbed \emph{KeepAugment}, to increase augmented images fidelity. The idea is first to use the saliency map to detect important regions on the original images and then preserve these informative regions during augmentation. This information-preserving strategy allows us to generate more faithful training examples. Empirically, we demonstrate our method significantly improves on a number of prior art data augmentation schemes, e.g. AutoAugment, Cutout, random erasing, achieving promising results on image classification, semi-supervised image classification, multi-view multi-camera tracking and object detection.

Publication
In Conference on Computer Vision and Pattern Recognition
Meng Li
Meng Li
Staff Research Scientist

I am currently a staff research scientist and tech lead in the Meta On-Device AI team with a focus on researching and productizing efficient AI algorithms and hardwares for next generation AR/VR devices. I received my Ph.D. degree in the Department of Electrical and Computer Engineering, University of Texas at Austin under the supervision of Prof. David Z. Pan and my bachelor degree in Peking University under the supervision of Prof. Ru Huang and Prof. Runsheng Wang. My research interests include efficient and secure AI algorithms and systems.

var dimensionValue = 'SOME_DIMENSION_VALUE'; ga('set', 'dimension1', dimensionValue);