A monte carlo simulation flow for seu analysis of sequential circuits

摘要

An efficient methodology for soft error analysis of sequential circuits based on Monte Carlo sampling is proposed. It uses nested sampling for faster statistical convergence: it samples only from the workload space and statically evaluates the conditional probability over the subspace of particle strike and circuit parameters. A novel check on the stationarity of machine state sequence to reduce the number of samples to convergence is introduced. The flow combines logic simulation for latch-level error propagation and stationarity diagnostic and an improved combinational error simulator with a new masking model based on signal controllability. Experiments show that nested sampling reduces the number of samples by up to 1500X and runtime by up to 25X compared to direct sampling. Stationarity checking allows reducing sampling number by 25%, on average. The new latching window model permits accuracy of within 1% from SPICE, compared to a 12% error with a prior model.

出版物
In ACM/IEEE Design Automation Conference (DAC)
李萌
李萌
助理教授、研究员、博雅青年学者

李萌,北京大学人工智能研究院和集成电路双聘助理教授、研究员、博雅青年学者。他的研究兴趣集中于高效、安全的多模态人工智能加速算法和芯片,旨在通过算法到芯片的跨层次协同设计和优化,为人工智能构建高能效、高可靠、高安全的算力基础。

var dimensionValue = 'SOME_DIMENSION_VALUE'; ga('set', 'dimension1', dimensionValue);