Cross-level monte carlo framework for system vulnerability evaluation against fault attack

摘要

Fault attack becomes a serious threat to system security and requires to be evaluated in the design stage. Existing methods usually ignore the intrinsic uncertainty in attack process and suffer from low scalability. In this paper, we develop a general framework to evaluate system vulnerability against fault attack. A holistic model for fault injection is incorporated to capture the probabilistic nature of attack process. Based on the probabilistic model, a security metric named as System Security Factor (SSF) is defined to measure the system vulnerability. In the framework, a Monte Carlo method is leveraged to enable a feasible evaluation of SSF for different systems, security policies, and attack techniques. We enhance the framework with a novel system pre-characterization procedure, based on which an importance sampling strategy is proposed. Experimental results on a commercial processor demonstrate that compared to random sampling, a 2500X speedup is achieved with the proposed sampling strategy. Meanwhile, 3% registers are identified to contribute to more than 95% SSF. By hardening these registers, a 6.5X security improvement can be achieved with less than 2% area overhead.

出版物
In ACM/IEEE Design Automation Conference (DAC)
李萌
李萌
助理教授、研究员、博雅青年学者

李萌,北京大学人工智能研究院和集成电路双聘助理教授、研究员、博雅青年学者。他的研究兴趣集中于高效、安全的多模态人工智能加速算法和芯片,旨在通过算法到芯片的跨层次协同设计和优化,为人工智能构建高能效、高可靠、高安全的算力基础。

var dimensionValue = 'SOME_DIMENSION_VALUE'; ga('set', 'dimension1', dimensionValue);