NASViT: Neural Architecture Search for Efficient Vision Transformer with Gradient Conflict-Aware Supernet Training

Designing accurate and efficient vision transformers (ViTs) is an important but challenging task. Supernet-based one-shot neural architecture search (NAS) enables fast architecture optimization and has achieved state-of-the-art results on convolutional neural networks (CNNs). However, directly applying the supernetbased NAS to optimize ViTs leads to poor performance - even worse compared to training single ViTs. In this work, we observe that the poor performance is due to a gradient conflict issue: the gradients of different sub-networks conflict with that of the supernet more severely in ViTs than CNNs, which leads to early saturation in training and inferior convergence. To alleviate this issue, we propose a series of techniques, including a gradient projection algorithm, a switchable layer scaling design, and a simplified data augmentation and regularization training recipe. The proposed techniques significantly improve the convergence and the performance of all sub-networks. Our discovered hybrid ViT model family, dubbed NASViT, achieves top-1 accuracy from 78.2% to 81.8% on ImageNet from 200M to 800M FLOPs, and outperforms all the prior art CNNs and ViTs, including AlphaNet and LeViT. When transferred to semantic segmentation tasks, NASViTs also outperform previous backbones on both Cityscape and ADE20K datasets, achieving 73.2% and 37.9% mIoU with only 5G FLOPs, respectively.

李萌
李萌
助理教授、研究员、博雅青年学者

李萌,北京大学人工智能研究院和集成电路双聘助理教授、研究员、博雅青年学者。他的研究兴趣集中于高效、安全的多模态人工智能加速算法和芯片,旨在通过算法到芯片的跨层次协同设计和优化,为人工智能构建高能效、高可靠、高安全的算力基础。

var dimensionValue = 'SOME_DIMENSION_VALUE'; ga('set', 'dimension1', dimensionValue);