KeepAugment: A Simple Information-Preserving Data Augmentation Approach

摘要

Data augmentation (DA) is an essential technique for training state-of-the-art deep learning systems. In this paper, we empirically show data augmentation might introduce noisy augmented examples and consequently hurt the performance on unaugmented data during inference. To alleviate this issue, we propose a simple yet highly effective approach, dubbed \emph{KeepAugment}, to increase augmented images fidelity. The idea is first to use the saliency map to detect important regions on the original images and then preserve these informative regions during augmentation. This information-preserving strategy allows us to generate more faithful training examples. Empirically, we demonstrate our method significantly improves on a number of prior art data augmentation schemes, e.g. AutoAugment, Cutout, random erasing, achieving promising results on image classification, semi-supervised image classification, multi-view multi-camera tracking and object detection.

出版物
In Conference on Computer Vision and Pattern Recognition
李萌
李萌
助理教授、研究员、博雅青年学者

李萌,北京大学人工智能研究院和集成电路双聘助理教授、研究员、博雅青年学者。他的研究兴趣集中于高效、安全的多模态人工智能加速算法和芯片,旨在通过算法到芯片的跨层次协同设计和优化,为人工智能构建高能效、高可靠、高安全的算力基础。

var dimensionValue = 'SOME_DIMENSION_VALUE'; ga('set', 'dimension1', dimensionValue);